Learning Intention

• Learn some of the properties of sound waves.

Definitions

- 1. Natural frequency is the frequency at which an object with vibrate if struck.
- 2. <u>Forced</u> vibration occurs when an object is physically touched to an object that is vibrating.
 - a. <u>Resonance</u> occurs when an object undergoes <u>forced</u> vibration at its natural frequency.
- 3. In a <u>standing</u> wave, there is <u>constructive</u> and <u>destructive</u> interference between the initial waves and the reflected waves.

- interference, the medium does not undergo any displacement.
- b. An <u>anti-node</u> is the point in a standing wave where, due to <u>constructive</u> interference, the medium undergoes the maximum displacement in each direction.
- 5. In music, the term <u>pitch</u> is used to refer to the frequency of a sound wave.

Mr. Renwick'	's Physics 11
Worksheet -	Introduction to Sound
6. When	a guitar string is plucked, it produces <u>standing</u> waves in the string.
	J = = = = = = = = = = = = = = = = = = =
	$\bigcirc \infty \infty \infty$
	Each standing wave is called a <u>harmonic</u> .
b.	The lowest frequency is known as the <u>fundamental</u> frequency, or the
Journal of	first harmonic.
the state of the c.	The second lowest frequency standing wave is known as the <u>first</u>
	overtone, or the second harmonic.
d.	The third lowest frequency standing wave is known as the $\frac{5e(5 \circ \lambda)}{}$
	harmonic, or the third harmonic.
7. An air	column is a tube that is open at either <u>one</u> end or <u>both</u>
ends.	
a.	At aclosed end, the standing wave is not free to move longitudinall
	through the air:
	Nodes .
b.	At an <u>open</u> end, the standing wave is free to move longitudinally
	through the air:

through the air:

• Nades

8. Young humans can generally hear sounds from around 20 Hz to 20 kHz.

Mr. Renwick's Physics 11 Worksheet - Introduction to Sound

- a. Dog whistles make a noise at 23 to 54 kHz, which is considered the <u>ulfrasonic</u> range.
- 9. In air, at sea level (normal atmospheric pressure), the speed of sound is given by:

- 10.A <u>Supersonic</u> plane can fly faster than the speed of sound in air.
 - a. The $\underline{\text{Mach}}$ number indicates how fast the plane is flying.
 - b. When a plane breaks the <u>Sound</u> barrier (Mach 1.0), a <u>Sonic</u> is generated.
- 11. The loudness of sounds is measured using the $\frac{deciba}{}$ scale.
 - a. An increase of 10 dB results in ______ times as much power in the sound wave.

What is the rule of thumb for finding the distance from a lightfling stake?

bund of the Munder The air & All °C Hr

- b. O dB: Limit of human hearing
- c. 60 dB: Human voice
- d. 10 dB: Rock concert
- e. <u>\40</u> dB: Painful to the ears, can cause permanent damage

II Developed High

Workshop the Control of the Source

Questions and absence at the law hard at the section

- 1. For a 440 Hz tone
 - 1. What is the first harmonic?
 - 2. What is the first overtone?
 - 3. What is the second overtone?
 - 4. What is the third overtone?
- 2. What is the fundamental frequency, if the first overtone is 680 Hz?
- 3. What is the first harmonic, if the second overtone is 680 Hz?
- 4. What is the second harmonic, if the third overtone is 680 Hz?
- 5. How fast will sound travel at:
 - 1. 0.00 °C
 - 2. 25.0 °C
 - 3. 0 K
- 6. A camper sees a flash of lightning, and immediately begins counting until they hear the sound of the thunder. The air is 21 °C. How far from the lightning is the camper if the thunder arrives in:
 - 1. 9.0 seconds?
 - 2. 6.0 seconds?
 - 3. 3.0 seconds?
- 7. What is the rule of thumb for finding the distance from a lightning strike?
- 8. How fast is a plane travelling, in m/s, if it is going at a speed of:
 - 1. Mach 3.0 in 21 °C air.
 - 2. Mach 10.0 in -55 °C air.
- 9. How many times louder than a 40 dB library is a 110 dB concert?
- 10. How many times louder than a 60 dB air conditioner is a 120 dB jet engine?

ETOWERS A

1, 1, 440 Hz
2, 880 Hz
3, 300 Hz
2, 1800 Hz
3, 1 = 340 Hz
3, 1 = 230 Hz

3. I. v = 33.1 m/s

6 1 d = 3,180 m = 3.1 kr

 $t_{\rm c} d = 1,000 \, {\rm m} \approx 1.0 \, {\rm km}$

thunder, divided by 3. 8 1. v = 1,000 m/s = 1.0 km/s

2, v = 3,000 m/s = 3,0 km 9 130 times

10.44 times

.Page 5 of 6 See over →

Answers

- 1. 1. 440 Hz
 - 2.880 Hz
 - 3. 1300 Hz
 - 4. 1800 Hz
- 2. $f_0 = 340 \text{ Hz}$
- 3. $f_0 = 230 \text{ Hz}$
- 4. $f_1 = 340 \text{ Hz}$
- 5. 1. v = 331 m/s
 - 2. v = 346 m/s
 - 3. v = 167 m/s
- 6. 1. d = 3,100 m = 3.1 km
 - 2. d = 2,100 m = 2.1 km
 - 3. d = 1,000 m = 1.0 km
- 7. The distance in kilometers is equal to the time in seconds between the lightning and the thunder, divided by 3.
- 8. 1. v = 1,000 m/s = 1.0 km/s
 - 2. v = 3,000 m/s = 3.0 km/s
- 9. 130 times
- 10.64 times

4.
$$f_0 = \frac{1}{2}f_1$$
 $\frac{1}{2}f_1 = \frac{1}{4}f_3$ $f_1 = \frac{1}{4}f_3$ $f_2 = \frac{1}{2} \times 680 \text{ Hz} = 340 \text{ Hz}$

2.
$$V = 331^{m/s} + 0.6 \frac{m/s}{°c} \times (25°c) = 346^{m/s}$$

fo: fundamental (harmonic)

fo: 1st overtone (harmonic 2)

fo: 2nd overtone (harmonic 3)

fo: 3rd overtone (harmonic 4)

8.1
$$M = \frac{\sigma}{\sigma_{sound}} = 3.0 \times \left[331 \,\text{m/s} + 0.6 \,\frac{\text{m/s}}{\sigma_{c}} \times (21^{\circ}\text{C})\right] = 1030.8 \,\text{m/s}$$

$$\sigma = 1,000 \,\text{m/s}$$

- 2. $V = M_{J_{sound}} = 10.0 \times [331^{m/s} + 0.6 \frac{m/s}{s} (-55 ° c)] = 2980 \frac{m/s}{s}$
- 9. 110 dB 40 dB : 70 dB

 Every 10 dB : a doubling of power

 27 = 128 130 times
- 10. 120 dB 60 dB = 60 dB